An Overview of Dino - - A New Language for Numerical
Computation on Distributed Memory Multiprocessors *

Matthew Rosing
Robert B. Schnabel

CU-CS-385-88

@ﬁUniversity of Colorado at Boulder

o DEPARTMENT OF COMPUTER SCIENCE

* This research was supported by AFOSR grant AFOSR-85-0251, and NSF cooperative agreement DCR-8420944.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1988 2. REPORT TYPE 00-00-1988 to 00-00-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

An Overview of Dino --A New Language for Numerical Computationon | . .\ NUMBER

Distributed Memory Multiprocessors
5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 10
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18






ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO

NOT NECESSARILY REFECT THE VIEWS OF THE NATIONAL SCIENCE FOUN-
DATION



An overview of Dino--
a new language for numerical computation
on distributed memory multiprocessors

Matthew Rosing and Robert B. Schnabel

CU-CS-385-88 March 1988

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado, 80309 USA

This research was supported by AFOSR grant AFOSR-85-0251, and
NSF cooperative agreement DCR-8420944.






To appear in proceedings of The Third SIAM Conference on Parallel
Processing for Scientific Computing, held in Los Angeles, CA, Dec 1987.

Abstract. We briefly discuss the design of a new language, called Dino, for programming parallel
numerical algorithms on distributed memory multiprocessors. A significant difficulty with most current
approaches to programming such computers is that interprocess communication and process control must
be specified explicitly through messages, thereby making the parallel program difficult to write, debug, and
understand. Our approach is to add several high level constructs to standard C that allow the programmer
to describe the parallel algorithm to the computer in a natural way, similar to the way in which the algo-
rithm designer might informally describe the algorithm. These constructs include the specification of a
data structure of virtual processors that is appropriate for the problem, and the ability to map data and pro-
cedures to this virtual parallel machine. Parallelism is achieved through a concurrent procedure call that
utilizes these data and procedure mappings. All the necessary interprocess communication and process
control results implicitly through these constructs.

1. Introduction. Dino ("DIstributed Numerically Oriented language") is a new language for
writing numerical programs for distributed memory multiprocessors. By distributed memory
multiprocessor we mean any computer consisting of multiple processors with their own memories
and no shared memory, which communicate by passing messages. Examples include hypercubes,
and networks of computers used as multiprocessors.

The main goal of our work is to make parallel numerical programs for such computers easy
to writec and understand. The approach we take is to try to make the programs similar to the
natural descriptions of parallel algorithms that algorithm designers often use in explaining their
methods. Inherent in this approach is that interprocess communication and process control should
be implicit in the language constructs.

The constructs of Dino use the fact that many numerical algorithms are highly structured.
The main data structures used in these algorithms are arrays and possibly trees. The processes
that execute in parallel usually are also highly structured; sometimes the algorithm consists of
"single program, multiple data” scgments where the same code executes on different processors
and different parts of the data structure simultancously. In conjunction, the distribution of data
among processors, and the communication between them, typically follows regular pattemns.

The Dino language allows such parallel numerical algorithms to be described in a natural,

Department of Computer Science, University of Colorado, Boulder CO 80309. Rescarch supported by AFOSR grant AFOSR-
85-0251, and NSF cooperative agreement DCR-8420944.



top down manner. It provides both a mechanism for efficiently distributing data over the proces-
sors of a distributed memory machine, and the ability to easily operate on that distributed data
concurrently. Interprocess communications is implicit in the data mapping constructs, and is
therefore less subject to programmer errors than sending and receiving messages. The key to
these capabilities is the ability of the user to define a data structure of virtual processes (called
environments) that fits the algorithm and data structures.

Dino consists of extensions to standard C. We have chosen C for several reasons. It is
available on all the target parallel machines we have considered: it is a structured language,
which complements the new, highly structured characteristics of DINO; and there are a wealth of
compiler and other tools associated with C which considerably ease the task of implementing the
new language. In addition, by choosing C we have been able to use C++ [6] for our initial, proto-
type implementation.

To our knowledge, relatively little high level language design has been done for distributed
memory multiprocessors. Languages such as Linda [1,2] and Pisces [5] support distributed
numerical programming, but have a more low level orientation to issues such as communication.
We were partially motivated by languages such as the Force [3,4] which have greatly facilitated
parallel numerical programming on shared memory multiprocessors; we would like to bring a
similar level of ease to programming distributed memory multiprocessors.

The rest of this paper bricfly and informally introduces the main ideas in Dino, gives one
simple example of a Dino program, and gives a very brief synopsis of the status and dircctions of
this work. Subsequent papers will describe Dino in more detail and discuss our experience with
using it more thoroughly.

2. Dino Overview. The goal of Dino is to allow the programmer to communicate a distributed
parallel algorithm to the computer in a way that is similar to the natural way that we often
observe algorithm designers informally describing their methods. To facilitate this, Dino pro-
vides two important new capabilities, distributed data structures and composite procedures. Both
are in turn based upon an underlying data structure of virtual concurrent processors (environ-
ments) that is provided by the user. We now briefly describe the characteristics of each of these
three fundamental aspects of Dino.

2.1. Environments. The key construct that allows Dino to provide a natural, high level descrip-
tion of a parallel algorithm is a user defined structure of environments. An environment consists
of data and procedures. It may contain multiple procedures, but only one procedure in an
environment may be active at a time. Thus each environment can correspond to a process, and
this is how environments are implemented in our Dino prototype. A more general possibility is
mentioned in Section 3.

To create a parallel algorithm, the user declares a structure of environments which best fits
the number of processes, and the communication pattern between processes, in the parallel algo-
rithm. This structure can be viewed as a virtual parallel machine constructed for the particular
algorithm. In our experience, the most common structures of environments are one, two, and
higher dimensional arrays. This is because the parallelism in numerical algorithms often derives
cither from the partitioning of physical space into neighboring regions, or from the partitioning of
arrays, both of which result in parallel algorithms whose data mappings and procedural parallel-
ism are naturally described in terms of arrays of processors. It is possible, however, 10 use any
data structure in defining a structure of environments.

2.2. Distributed data. Dino allows the user to specify mappings, either one to one or one to
many, of data structures to the underlying virtual machine structure given by the user-defined
structure of environments. These mappings, which are specified as part of the declaration of the
data structure, are selected according to how the processors will access and share the data. They
are the key to making interprocess communication natural and implicit.

An example of distributed variables is illustrated in Fig. 1 and in the Dino program in the
Appendix. Suppose we wish to solve Poisson’s equation with zero right hand side,



U U _
T Hr =0

?

on a square domain with some given boundary condition by a simple finite difference method. In
this method we discretize the variable space into U; ;, i=0, -+ N, j=0,- -+ N, and then iteratively
apply the formula

Uij = (Uirj + Ui j + Ui j + Uiy ) 14 2.1

to calculate the new value at each grid point except the border points, until the values converge.
The natural topology for this problem is a two dimensional grid. If we assume for simplicity that
we create a unique environment ¢; ; for each grid point except the border points, then the natural
structure of environments is also a two dimensional array, e, i=0, - N-1, j=0, -+ N-1. Now
from equation (2.1), each variable U; ; (except border variables) is used in the environment where
it resides, and the environments directly to the north, south, east, and west. Thus the distributed
data mapping function is to map each U",j to Cijy Citljs €io1, € j+l,s and €; j-1.

Fig. 1. Distributing a partial differential equation calculation

The variable U; ; is an example of a distributed variable that is mapped to multiple environ-
ments. In this case a local copy of that variable will exist in each of the environments to which it
is mapped. A procedure in any of these environments can then access the variable either locally
or remotely. A local access, which uses standard syntax, affects just the local copy and is the
same as any standard reference to a variable. A remote access, which uses the syntax variable
name#, is used to generate interprocess communication. A remote assignment to a distributed
variable gencrates a message that is sent to every other processor to which that variable is
mapped, while a remote read of a distributed variable will receive such a message and update the
variable’s value, in one of two ways that are described below. Thus one to many mapping func-
tions can be thought of as defining locally shared variables, where certain data elements are
shared between certain subsets of the processors. This mapping provides the information
required to automatically generate the necessary sends and receives when these variables are
accessed remotely.

Dino distributed variables may be either synchronous and asynchronous. The default is
synchronous, but a distributed variable may be made asynchronous by placing "asynchronous"
before "distributed” in its declaration. In either case, a remote write causes a message, with a
new value of the distributed variable, to be sent to a buffer in each other environment to which



that variable is mapped. A remote read of a synchronous variable causes it to overwrite its local
copy with the first value that has been received since the last remote read; if no new value is
present, it blocks until one is received. A remote read of an ansynchronous variable causes it to
overwrite its local copy with the /ast value that has been received since the last remote read; if no
value has been received, it retains its current local value, and does not block. A nice consequence
of this construction is that by changing a distributed variable’s declaration from synchronous to
asynchronous, a program can be changed from a data synchronous parallel program to an asyn-
chronous ("chaotic") program.

Dino provides an extensive collection of standard mapping functions, such as the
NSEWoverlap mapping used in the example. The user can also create arbitrary mapping func-
tions.

2.3. Composite procedures. A composite procedure is a set of identical procedures, one resid-
ing within each environment of a structure of environments, which is called concurrently. Iis
parameters typically include distributed variables. A composite procedure call causes each pro-
cedure to execute, utilizing the portion of the distributed parameters, and possibly other distri-
buted data structures, that are mapped to its environment. This results in a "single program, mul-
tiple data" form of parallelism. There is no need to explicitly send code to each processor, to ini-
tiate execution on individual processors, or to explicitly distribute or collect data among proces-
SOrS.

Distributed variables that are parameters to composite procedures can be declared as input,
output, or input/output parameters. Upon invocation of the composite procedure, a input parame-
ter is distributed based upon its mapping function. That is, the value of each of its elements is
sent from the calling procedure to cach environment to which that element is mapped. Upon ter-
minatation of the composite procedure, the value of each output parameter is sent from the
environment to which it is mapped back to the calling procedure. If the mapping is one to many,
the mapping function specifies from which environment the value should be returned.

In the Poisson solver example, the composite procedure Poisson performs itns iterations of
equations (2.1) at grid point U; ;. The distributed variable U is a one to many, input and output
parameter. The mapping function specifics that upon process termination, the value of each Ui
should be retrieved from the environment e; ;.

In summary, the main advantage of composite procedures, together with distributed data
and environments, is that they permit a natural, high-level description of many parallel algo-
rithms, while making the details of interprocess communication implicit in the language.

3. Current Status and Future Directions. We have implemented a prototype of Dino using
C++ [6]. It runs on the Intel hypercube, the hypercube simulator, and on our network of Sun
workstations. We have written parallel programs for a varicty of numerical algorithms in
Dino/C++, as well as paper programs in standard Dino. Our opinion is that these programs are
usually considerably easicr to write and understand than the same parallel programs in existing
languages for distributed memory multiprocessors; subsequent papers will give a larger number
of examples that help support this claim. Another benefit of the prototype has been to enable us
to understand better the low level issues in implementing Dino.

The Dino research is leading in a number of interesting directions, which we are beginning
to pursue. First, we continue to consider new features for Dino. Mainly these are enrichments
which would allow Dino to express a broader class of parallel algorithms ecasily. Examples
include multiple distributed mapping functions for a single data structure, multiple environments
in a single program, and facilities for supporting dynamic process structures and dynamic distri-
buted data structures. A second area is tools for optimizing parallel programs. The information
about interaction between environments that is readily available in a Dino program provides the
opportunity to make good mappings of environments to processes, and of processes 10 the proces-
sor topology of the target computer. The latter is already done in a simple way in the C++ proto-
type. The former might allow the programmer to specify environments at a finer grain than there
are processors, when this is the natural way to describe the algorithm, and then have a tool make



a good decision about how best to bundle the environments into processes. Finally, the graphical
nature of the basic Dino constructs, such as the structure of environments and the data mapping
functions, makes in natural to consider a graphical interface to Dino.

(3

“

)

(6)

REFERENCES

N. CARRIERO and D. GELERNTER, The S/Net's Linda kernel, ACM Transactions on
Computer Systems 4, 1986, pp. 110-129.

D. GELERNTER, N.CARRIERO, S. CHANDRAN, and S.CHANG, Parallel programming
in Linda, in Proceedings of the 1985 International Conference on Parallel Processing, IEEE
Press, 1985, pp. 255-263.

H. F. JORDAN, The Force, in The Characteristics of Parallel Algorithms, L. H. Jamieson,
D. B. Gannon and R. J. Douglass, Eds., MIT Press, 1987, pp. 395-436.

H. F. JORDAN, Structuring parallel algorithms in an MIMD, shared memory environment,
Parallel Computing 3, 1986, pp. 93-110.

T. PRATT, The Pisces 2 parallel programming environment, in Proceedings of the 1987
International Conference on Parallel Processing, IEEE Press, 1987, pp. 439-445.

B. STROUSTRUP, The C++ Programming Language, Addison-Wesley, Reading, Mas-
sachusetts, 1986.

Appendix -- Dino Program for Parallel Solution of Poisson’s Equation

#define N 128
environment node[N:xid]}[N:yid] {
composite Poisson(U, in itns)
distributed float UN+2][N+2] : NSEWaoverlap;
int itns; *number of iterations*/
{
inti,x,y;
x =xid + 1;
y =vyid + 1;
[*calculate using local values to start cycle*/
Ulx]lyl# = (Ulx+11[y] + Ulx-11[y] + Ulx]{y+1] + Ulx][y-11)/4;
/*calculate remaining iterations using remote values*/
for (i=1; i<itns; i++)
Ulllyl# = (Ulx+1][y}# + Ulx-1][y}# + Ulx][y+11# +
Ulx][y-11#)/4 ;
} F*poisson*/
} #node*/
environment host{
float GIN+2][N+2];
main(){
initPoisson(G);
Poisson(G[](], 250)#;
display(G);
} /*main*/
}/*host*/



